inomed Medizintechnik GmbH
Im Hausgruen 29
79312 Emmendingen (GERMANY)
Tel. +49 7641 9414-0
Fax +49 7641 9414-94
info@inomed.com
www.inomed.com

Intraoperative Neuromonitoring
Functional Neurosurgery
Pain Treatment
Neurological Diagnostics

Publications about the topic
and further information are
available at:
www.inomed.com/pelvicMonitoring

PARTNERSHIP

Precision

Innovation

Art.-No. 520 300
pIOM Box
bladder pressure measuring
for connection to IONM devices,
for use with disposable pressure
converter
USB-powered
non-autoclavable

Art.-No. 520 335
pIOM Set
with SDN electrodes
complete set consisting of
Catheter Connection Set
for bladder pressure measuring
• SDN electrodes
• fork probe 400mm
• single-use
• ETO-sterilized

Art.-No. 520 336
pIOM Set
with rectal electrode
complete set consisting of
Catheter Connection Set
for bladder pressure measuring
• rectal electrode
• fork probe 400mm
• single-use
• ETO-sterilized

APPLICATION AREA
colorectal surgery

Accessory information

Urinary Incontinence
Sexual Dysfunction
Anal Incontinence

www.inomed.com/pelvicMonitoring
The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection. Functionality of the continence organs are intraoperatively monitored by the pIOM technology for pelvic Neuromonitoring. Thereby, inomed minimizes the risk of nerve injuries and the sequela involved. The procedure is simple for the surgeon and does not cause considerable surgical delay. Stimulation site in the minor pelvis is the inferior hypogastric plexus and the pelvic splanchnici nerves. Urogenital functions and the anorectal function are monitored by bladder pressure measurement and monitoring of the internal anal sphincter. The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control. At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions. Positive signals at bladder and rectum generally indicate preservation of sexual function.

Twelve years of research: improved patient safety thanks to neuromonitoring of autonomic nerves

Intense clinical research has resulted in pelvic intraoperative neuromonitoring, enabling neuromonitoring of the autonomic nerves in the minor pelvis. The complex nerve structures can be localized and their function can be monitored. Many interventions in the minor pelvis, which have a risk for the autonomic nerve system, are possible for this application.

APPLICATION EXAMPLE: TME

The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection.

Twelve years of research: improved patient safety thanks to neuromonitoring of autonomic nerves

Intense clinical research has resulted in pelvic intraoperative neuromonitoring, enabling neuromonitoring of the autonomic nerves in the minor pelvis. The complex nerve structures can be localized and their function can be monitored. Many interventions in the minor pelvis, which have a risk for the autonomic nerve system, are possible for this application.

STIMULATION OF PELVIC NERVES

The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control.

At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions.

Positive signals at bladder and rectum generally indicate preservation of sexual function.

APPLICATION EXAMPLE: TME

The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection.

Twelve years of research: improved patient safety thanks to neuromonitoring of autonomic nerves

Intense clinical research has resulted in pelvic intraoperative neuromonitoring, enabling neuromonitoring of the autonomic nerves in the minor pelvis. The complex nerve structures can be localized and their function can be monitored. Many interventions in the minor pelvis, which have a risk for the autonomic nerve system, are possible for this application.

STIMULATION OF PELVIC NERVES

The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control.

At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions.

Positive signals at bladder and rectum generally indicate preservation of sexual function.
The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection.

Functionality of the continence organs are intraoperatively monitored by the pIOM technology for pelvic Neuromonitoring. Thereby, inomed minimizes the risk of nerve injuries and the sequela involved.

The procedure is simple for the surgeon and does not cause considerable surgical delay. The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control.

At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions.

Positive signals at bladder and rectum generally indicate preservation of sexual function.

Twelve years of research: improved patient safety thanks to neuromonitoring of autonomic nerves

Intense clinical research has resulted in pelvic intraoperative neuromonitoring, enabling neuromonitoring of the autonomic nerves in the minor pelvis. The complex nerve structures can be localized and their function can be monitored. Many interventions in the minor pelvis, which have a risk for the autonomic nerve system, are possible for this application.

APPLICATION EXAMPLE: TME

The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection.

Functionality of the continence organs are intraoperatively monitored by the pIOM technology for pelvic Neuromonitoring. Thereby, inomed minimizes the risk of nerve injuries and the sequela involved.

The procedure is simple for the surgeon and does not cause considerable surgical delay. The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control.

At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions.

Positive signals at bladder and rectum generally indicate preservation of sexual function.

Twelve years of research: improved patient safety thanks to neuromonitoring of autonomic nerves

Intense clinical research has resulted in pelvic intraoperative neuromonitoring, enabling neuromonitoring of the autonomic nerves in the minor pelvis. The complex nerve structures can be localized and their function can be monitored. Many interventions in the minor pelvis, which have a risk for the autonomic nerve system, are possible for this application.

APPLICATION EXAMPLE: TME

The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection.

Functionality of the continence organs are intraoperatively monitored by the pIOM technology for pelvic Neuromonitoring. Thereby, inomed minimizes the risk of nerve injuries and the sequela involved.

The procedure is simple for the surgeon and does not cause considerable surgical delay. The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control.

At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions.

Positive signals at bladder and rectum generally indicate preservation of sexual function.

Twelve years of research: improved patient safety thanks to neuromonitoring of autonomic nerves

Intense clinical research has resulted in pelvic intraoperative neuromonitoring, enabling neuromonitoring of the autonomic nerves in the minor pelvis. The complex nerve structures can be localized and their function can be monitored. Many interventions in the minor pelvis, which have a risk for the autonomic nerve system, are possible for this application.

APPLICATION EXAMPLE: TME

The pelvic neuromonitoring is an useful addition to the method of total mesorectal excision (TME). The pIOM allows a more gentle surgery especially for the nerves, than the standardly used maximal resection.

Functionality of the continence organs are intraoperatively monitored by the pIOM technology for pelvic Neuromonitoring. Thereby, inomed minimizes the risk of nerve injuries and the sequela involved.

The procedure is simple for the surgeon and does not cause considerable surgical delay. The pelvic nerves are stimulated using a bipolar hand-guided stimulation probe which has been developed specifically for this purpose. It provides sufficient selectivity and the localization of individual nerve branches as well as their functional control.

At the beginning of surgery, electrodes must be placed at the internal anal sphincter and external anal sphincter muscles to monitor anorectal functions.

Positive signals at bladder and rectum generally indicate preservation of sexual function.
Accessory information

- **Art.-No. 520 300**
 - **pIOM Box**
 - Bladder pressure measuring
 - For connection to IONM devices, for use with disposable pressure converter with 1.5mm touchproof female connector
 - USB powered
 - Delivery non-sterile
 - Non-autoclavable

- **Art.-No. 520 315**
 - **pIOM Set**
 - with SDN electrodes
 - Complete set consisting of Catheter Connection Set for bladder pressure measuring
 - SDN electrodes
 - Probe, probe 400mm
 - Single-use
 - ETO-sterilized

- **Art.-No. 520 335**
 - **pIOM Set**
 - with rectal electrode
 - Complete set consisting of Catheter Connection Set for bladder pressure measuring
 - Rectal electrode
 - Probe, probe 400mm
 - Single-use
 - ETO-sterilized